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The inverse two-spin correlation function of a one-dimensional three-state 
Ports lattice with constant nearest-neighbor interactions in a uniform external 
field is derived exactly, It is shown that the external field induces long-range 
correlations. The inverse two-spin correlation function decays in a monotonic 
exponential fashion for a ferromagnetic lattice, while it decays in an oscillatory 
exponential fashion for an antiferromagnetic lattice. With no external field 
the inverse two-spin correlation function has a finite range equal to that of the 
interactions. 
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1. I N T R O D U C T I O N  

The central point in the Ornstein-Zernikd I) theory of the pair correlation 
function v(r) is the observation that near the critical point of a fluid v(r) 
develops a very long tail, that is, its Fourier transform at zero wave vector 
is infinite at the critical point. As usual when infinities are present in a 
theory, one shifts attention to a less singular function that can be handled 
conveniently. The direct correlation function c(r) (or, equivalently, the 
inverse pair correlation function) introduced by Ornstein and Zernike is in 
this sense a more convenient function because it is shorter ranged than v(r). 
In particular, the Fourier transform of c(r) at zero wave vector is finite at 
the critical point. It was supposed further by Ornstein and Zernike that 
c(r) is so short-ranged as to have a finite second moment at the critical 
point. These assumptions lead to a qualitatively very good description of 
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the long tail of v(r) in three dimensions, but completely fail in a one- or 
two-dimensional space. (2) 

Since the pioneering work of Ornstein and Zernike in 1914, c(r) has 
been proved to be one of the most important functions in equilibrium 
statistical mechanics. It plays a central role in the density functional theory 
of both uniform and nonuniform classical systems of which any application 
requires some prescription for c(r). 

In the case of spin systems, the role of v(r) is played by the two-spin 
correlation function v(n), ~2~ which has properties quite similar to v(r). The 
inverse of v(n), which we denote henceforth by k(n), has been widely 
studied in model systems. 2 One-dimensional lattice systems have been 
considered in detail because all calculations can usually be done without 
approximation. Percus r showed that k(n) has the range of the interactions 
for an Ising chain with constant nearest-neighbor interactions in an 
arbitrary external field. Recently, it was proved (4'6) that this result also 
holds for nonconstant nearest-neighbor interactions. That k(n) is also of 
the interaction range for next-nearest-neighbor interactions was proved by 
Robert (5) in the absence of external field. Borzi et al. (6) showed numerically 
that for a next-nearest-neighbor Ising model in a uniform external field 
k(n) has an oscillating tail and that further interactions induce long-range 
correlations. 

In this paper we present an exact calculation of k(n) for a three-state 
Potts lattice with constant nearest-neighbor interactions in a uniform exter- 
nal field. We show that, in contrast to the case of the Ising model, the 
uniform external field induces long-range inverse two-spin correlations for 
ferromagnetic as well as for antiferromagnetic lattices. With no external 
field, k(n) has exactly the range of the interactions. 

2. AN EXACTLY SOLVABLE MODEL 

Our model is a one-dimensional lattice of N three-state Potts variables 
si ( i=  1, 2,..., N) with constant nearest-neighbor interactions in a uniform 
external field. The Hamiltonian for a configuration {si} of these variables 
is 

HN{Si}= -- ~ {Jb(si, si+l)+ ~ B~f(s~,~)} (1) 
i=1  c~=0, • 1 

where each Potts variable s~ may take the values 7 = 0, _+ 1 and a periodic 
boundary condition sx+l=sl has been assumed. Here, J is the nearest- 

z For  dichotomic spins k(n) can be shown to be equivalent, to within a numerical factor, to 
the direct correlation function, say c(n), but  this equivalence is not  valid for higher dimen- 
sional spins. 
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neighbor potential, J > 0  for ferromagnetic interaction and J < 0  for 
antiferromagnetic interaction, and the Kronecker delta in the potential 
energy of interaction ensures that any two like values are equally favored 
on neighboring sites, while any two unlike values are equally unfavored. 
The external field couples to a Potts variable si via B~(s~, c~), B~ being the 
strength of the external field on the 7 state. This dependence favors the 
c~ state with large B~ strength. We take henceforth B= = c~B. 

The equilibrium statistical mechanics of our model is fully contained 
in the partition function 

Z:r b~)= ~ exp(-/~H.v{s,}) 
{~-~} 

= ~  exp KS(si, s,+l)+ ~ b~5(s~,c~) (2) 
{si} i 1 ~ = 0 , + 1  

where the sum is over all the lattice configurations and we have defined 
the dimensionless constants K=flJ and b~=flB~, with f l=  1/kBT, kB 
Boltzmann's constant, and T the absolute temperature. The partition 
function Z,v(K, b~) can be exactly computed using standard transfer matrix 
techniques, with the result 

ZN(K, b:,) = tr{P :v} = ~ 2~ v (3) 
~ = 0 , + 1  

where tr denotes the trace operator, P is the 3 x 3 symmetric positive-semi- 
definite matrix 

Pu=exp{K3(i,j)+ ~ b~[6(i,~)+3(j,~)]/2} (4) 
~ = 0 , _ + 1  

with i, j = 0 ,  _+1 and 2~ its real eigenvalues. Solving the characteristic 
equation of P, we get the following cubic equation: 

2 3 - -  A2/" 2 y + ) J ' l  ( y  2 - 1) - Fo(y - 1 )  2 (y + 2) = 0 (5) 

with 
y = exp(K) 

F2=  ~ exp(b~) 
: ~ = 0 , - +  1 

r~ 5 Z Z  exp(b~+b~,) 
~ , ~ ' = 0 , +  l 

c~ 0 + 1  = , 

(6a) 

(6b) 

(7 # ,7') (6c) 

(6d) 
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Equation (5) has three positive and unequal roots for K >  0 (ferromagnetic 
lattice) and one positive root and two unequal negative roots for K < 0  
(antiferromagnetic lattice). One important exception to this rule should be 
mentioned. When b~ = 0 for all ~, i.e., when the three states are equivalent, 
two of these roots become equal. This special case will be discussed below. 
The analytical expression for the eigenvalues 2~ can be written in the 
following trigonometric form(7): 

2: = A cos(~b/3) + A' (7a) 

Z o = A cos[(~b + 2~)/3] + A' (7b) 

)~-1 = A cos [ (~b + 4~)/3 ] + A' (7c) 

with 

A 2 2 2 = 5[V2y + 3/-1( 1 _ y2)],/2 > 0 (8a) 

A'= F2 y/3 > 0 (8b) 

cos ~b = [2F~ y3 _ 9F~ F 2 y(y2 _ 1) + 27Fo(y - 1) 2 (y + 2)] 

x { 2 [ r ~ y  2 -  3 G ( y  2 -  1)]3/2} -1 (8c) 

Equations (6)-(8) accomplish the desired goal of evaluating analyti- 
cally ZN(K, b~) in terms of the dimensionless constants K and b~. From 
these exact results it is an easy matter to derive any equilibrium distribu- 
tion function by usual transfer matrix methods. 

3. TWO-SPIN CORRELATION FUNCTION 

Let us restrict ourselves to the two-spin correlation function defined as 

v(n)= lim VN(n) (9) 
N ~ o o  

with 

where 

and 

ou(n) = {~s, ~s,+n) (~o) 

A s i = s i -  <Ss> (11) 

{ f { s , }  > = ZN~(K, b=) ~ f {s , }  exp(--flHN{S~} ) (12) 
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i.e., ( f { s ~ } )  denotes the statistical average of any well-behaved function of 
the Potts variables f{s~} over a canonical distribution function with 
Hamiltonian Om{Si}. We proceed to evaluate ON(n), noting that 

(6(Si, 7)) = ZNI( K, b~) tr{(P') N U+Mr U} (13a) 

( 6(si, 7) 6(si+,, a ) )  = ZNI(K, b~) tr{ (P') u " U+ M.~ U(P') ~ U+ M ,  U} 

(13b) 

where U is the unitary matrix (U + being its adjoint) that transforms P to 
a diagonal matrix P' = U+PU with matrix element P~. = )~6(i, j)  and 

(M~)~ = 6(i, j) fi(j, 7) (14) 

It is straightforward to calculate the traces in (13), the final expres- 
sions being considerably simplified at the thermodynamic limit N ~  0o. 
Using the identities 

si = ,~(s,, 1 ) - ,~(s~, - 1) ( l  5 a )  

s , s j  = O(s~, 1) 6(s ; ,  1) + ~(s~, - 1) 6(s; ,  - 1) 

-[6(s~, l )6 (6 ,  - 1 ) + 6 ( s , ,  -1 )6 ( s j ,  1)] (15b) 

the statistical averages ( s i )  and (sisi+n) can be expressed as a superposi- 
tion of terms in the form (13a) and (13b). Let 21 be the largest eigenvalue 
of P. After some algebra one finds 

v(n)=Ao(2o/21) rnl+A 1(2 1/)~,)1"1 (16) 

where A o and A-1,  expressed in terms of the matrix elements U,j, are given 
by 

A o = (U11 UlO - U 1 1 U  10) 2 

A _ I = ( U l l U I _ I - U _ l l U  1_1) 2 

(17a) 

(17b) 

For a ferromagnetic lattice (20 > 0  and 2_1 >0)  the two-spin correla- 
tion function decays as a superposition of two monotonic decreasing 
exponentials, while for an antiferromagnetic lattice (2 o < 0 and 2_ 1 < 0) the 
two-spin correlation function decreases as a superposition of two 
oscillatory exponentials. As quoted before, with no external field, 2" = 2"_1 
and the two-spin correlation function is [2* = 2g(b~ = 0), A* = Ai(b ~ = 0 ) ]  

o(n) = (A* + A* 1)()o~/2") I'l (18) 
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decreasing as a simple monotonic ( K > 0 )  or oscillatory ( K < 0 )  exponen- 
tial. Equations (16) and (18) are the main results in this paper, though the 
effect of the external field will become more transparent in terms of the 
inverse two-spin correlation function. 

4. THE INVERSE T W O - S P I N  CORRELATION FUNCTION 

Let us rewrite equation (16) as 

v(n)=(+_l)n[Aoexp(-lnl/~o)+A , exp(-]nl /~ 1)] (19) 

with +1 ( - 1 )  corresponding to the ferromagnetic (antiferromagnetic) 
lattice and 

1/3o = In 121/2o1 (20a) 

1/r ~=1n121/2 tk (20b) 

Defining the discrete Fourier transform of v(n) as 

v(q)= L v(n)exp(-iqn) (21) 
n c o  

we find that a simple calculation leads to 

g(q) = (q~ T t/2 cos q)/(q3 T ~/4 cos q + cos 2 q) (22) 

where the upper (lower) sign corresponds to a ferromagnetic (antiferro- 
magnetic) lattice and we have defined 

~1 =Aosinh(1/~o)cosh(1/~-,) 

+ A  ~ sinh(1/~_~)cosh(1/~o) 

qz=Ao sinh(1/~o)+A L sinh(1/~ l) 

q3 = cosh(1/~o)cosh(1/~_l) 

~4=cosh(1/~o)+cosh(1/~ 7) 

(23a) 

(23b) 

(23c) 

(23d) 

The Fourier transform of the inverse two-spin correlation function 
k(n) is then simply obtained as 

k (q )=6  l(q) (24) 
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with an inverse Four ier  t ransform k(n) given by 

k(n) = (1/27r) eZjo = dq it(q)exp(iqn) 

fo 
'~ //3 -T-//4 cos q + cos 2 q 

= (1/2~) dq ~i+//2co~--q exp(iqn) (25) 

The integral (25) can be evaluated as follows. Let z = exp(iq) and write the 
integral  (25) in terms of this complex variable to get 

7, 4 -T2t14z3 + 2(l + 2//3)z2-T-2//4z + l 
k ( n ) =  g(1/4rci//2)frdzz"-2- (26) 

(z-z~)(z-z2) 

where the con tour  of integrat ion F consists of the circumference Izl = 1 and 

Z1 ~- - -  { / /1 / / /2  -}- [ - ( / /1 / / /2 )  2 -  1] 1/2} (27a) 

Z2 = "}- { / / 1 / / / 2 - -  [ ( / / 1 / / / 2 )  2 -  ] [ ]1 /2}  ( 2 7 b )  

the upper  (lower) sign in (26) and (27) corresponding to K >  0 ( K <  0). The 
integrand of (26) has two simple poles at zl and z 2 for all n, a pole of 
second order  at z = 0 for n = 0, and a simple pole at z = 0 for n = 1. Using 
the me thod  of residues and taking into account  that  Zl lies outside the 
integrat ion con tour  Izl = 1 (notice tha t / /1  > ~/2), we find 

( ~ -  ~ / ~ )  a(n, o) T ~(n, 1) k ( n ) =  
//2 2//2 

._}_ (~___ l ) n  { / /1 / / /2  - -  [ ' ( / / 1 / / / 2 )  2 - -  1 ]  1/2 }n [ - ( / /1 / / /2 )2  __ //4//1/712 ..~ / / 3 ]  
(1/2 __ / /2)1/2 

(28) 

the upper  (lower) sign cor responding  to K >  0 ( K <  0). The r ight-hand side 
of (28) is a sum of two shor t - range  6 terms [ the  contr ibut ions  of the 
residues at z = 0 in (26)]  and a long-range exponent ia l  term [ the contr ibu-  
t ion of the residue at z = z 2 in (26)].  

It  can be easily seen f rom (23) that  

( / / i / / / 2 )  2 - -  / /4//I/ /~/2 -}- //3 

=-AoA-lsinh(1/{o)sinh(1/{ 1 ) [ c o s h ( 1 / { o ) - c o s h ( 1 / {  1)] 2 (29) 

is nonzero  because ~ o r  t, Ao=/=0, and A _ I  va0. Therefore  k(n) is long- 
ranged. 
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Remark that a necessary condition for k(n) to be long-ranged is r/2 :# 0. 
Indeed, coming back to (25) and writing its right-hand side in terms of the 
complex variable z = exp(iq), it can be readily seen that ~/2 = 0 implies that 
there is not other pole than z = 0  inside the integration contour Izl = 1. 
In the present model r/1 > 1/2 > 0  and therefore in (22) the numerator is a 
first-degree polynomial in cos q with nonvanishing coefficients. Another 
necessary condition in order for k(n) to have a long range is that in (22) 
the numerator cannot be a multiple of the denominator because this would 
turn /~(q) into the form a + b cos q with no other pole than the origin 
inside the integration contout I z j = l .  This last condition implies 
( / ~ I / ~ 2 ) 2 - - t 7 4 / ~ I / / ~ 2 - } - ~ 3  : ~ 0 ,  which we have proved to be a direct implica- 
tion of the no-simple-exponential form of the two-spin correlation function. 

We thus get the following results. For a ferromagnetic lattice, k (0 )>  0 
and k ( n ) < 0  (n>  1), k(n) having a monotonic exponential decay as 
Inl--* oo (see Fig. 1). For an antiferromagnetic lattice, k (0 )>0 ,  k (1 )>0 ,  
and sgn k(n)= ( - 1  )"+ 1 (for all n > 1), k(n) having an oscillatory exponen- 
tial decay as Inl --* oo (see Fig. 2). This behavior resembles that reported by 
Borzi et al36) in their study of the next-nearest-neighbor Ising chain in a 
uniform external field. The oscillating tail appeared there because they con- 
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Fig. 1. The inverse two-spin correlation function k(n) of a ferromagnetic lattice (b=0.8, 
K= 5.0) versus n. 
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Fig. 2. The inverse two-spin correlation function k(n) of an antiferromagnetic lattice (b -. 5.0, 
K =  -10 .0 )  versus n 

sidered a negative next-nearest-neighbor interaction constant, while they 
found k ( 1 ) <  0 because they took a positive nearest-neighbor interaction 
constant. 

Let us consider now the three-state Potts lattice with no external field. 
The novelty here is that v(n) decreases as a simple exponential [see (18)]. 
Since in this case ~.o = ~ 1, the right-hand side of (29) vanishes identically 
and only the c~ terms in (28) contribute to k(n), the t/i constants appearing 
therein having to be replaced by t/* = r/i(b ~ =0).  Consequently, k(n) has 
the range of the interactions. 

5. C O N C L U S I O N S  

We have derived an exact calculation of the inverse two-spin correla- 
tion function k(n) of the one-dimensional three-state Ports lattice with 
constant nearest-neighbor interactions in a uniform external field. We have 
shown that the external field induces long-range correlations. The method 
we have used starts with the exact calculation of the two-spin correlation 
function v(n) by usual transfer matrix techniques. This functions decays as 
a superposition of two exponentials, this number being a unit less than the 
number of independent roots of the characteristic equation. With no exter- 
nal field, two of the three roots are equal and, consequently, o(n) decays as 
a simple exponential. Notice that for an Ising lattice with nearest-neighbor 
interactions there are two independent roots (with external field as well as 
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with no external field) and therefore v(n) always decays as a simple 
exponential. 

The inverse two-spin correlation function k(n) has been derived from 
v(n) by using discrete Fourier transforms. We have shown that the external 
field induces a long tail in k(n), its mathematical origin being a direct con- 
sequence of the no-simple-exponential behavior of v(n). With no external 
field, k(n) has exactly the range of the interactions. However, it should be 
kept in mind that the inverse two-spin correlation function of a next- 
nearest-neighbor Ising lattice with no external field has the range of the 
interactions ~s~ in spite of the fact that v(n) is a sum of two exponentials ~8~ 
as it is in the present model. It can be shown that for that model tt2 [see 
(23b)] vanishes identically and the integrand in Eq. (26) has no other pole 
than z = 0 inside the integration contour 14. 

We finally remark that our findings do not contradict the result of 
Percus, ~ who extended previous investigations to a one-dimensional Ising 
chain of D-dimensional spins with nearest-neighbor interactions. He found 
that in all cases the direct correlation function c(n) has nearest-neighbor 
support. As pointed out in footnote 2, c(n) and k(n) are not equivalent for 
nondichotomic spins. 
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